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Numerical representations of boundary approximations and conditions for three problems 
are investigated to determine the resulting global accuracy of the steady-state solution. 
Numerical accuracy with various boundary approximations is determined for quasi-one- 
dimensional inviscid flow in a duct with the interior grid points evaluated using the 
MacCormack scheme. When an extrapolation approximation with first-order local truncation 
error is used, the global second-order accuracy of the difference scheme can be destroyed. For 
one-dimensional flow in a porous medium, an implicit midpoint difference scheme which is 
consistent with the boundary conditions is developed without the need of boundary approx- 
imations. A dissipative model problem is solved with the boundary conditions discretized with 
first- and second-order accuracy. The overall second-order accuracy of the difference scheme 
is destroyed if first-order numerical representation of one of the boundary conditions is used. 
With a boundary approximation. the second-order global accuracy of the model problem is 
retained if either second-order extrapolation or first-order representation of the governing 
equation is used. 

INTRODUCTION 

Finite-difference schemes are usually developed for computing the interior points of 
the computational domain and then boundary conditions and special relations are 
used at and near boundaries. For a given set of governing equations, there are 
appropriate boundary conditions that result in a well-posed problem with continuous 
solutions and provide relations which allow some of the dependent variables to be 
determined at the boundaries. These boundary conditions are usually obtained from 
the physics of the problem. The remaining relations required to determine the 
dependent variables at the boundaries must be determined from boundary approx- 
imations such as extrapolation, characteristic compatibility relations, or difference 
relations obtained from the governing equations. The boundary approximations can 
influence the stability of the overall scheme and can influence the global accuracy of 
the difference approximation. These properties of the boundary approximations must 
be investigated for each interior difference scheme and set of governing equations. A 
review of this problem has been given recently by Turkel 111. Gustafsson 121 
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indicates that boundary approximations for the transient solution of hyperbolic 
equations can be differenced with one order lower accuracy than used for the interior 
difference scheme without decreasing the overall accuracy. This statement is perhaps 
misleading due to the accuracy definition. Skollermo [3] restates this conclusion as 
“formally, the local truncation error in the boundary approximation should also be of 
the same order as the global error of the interior scheme.” Bramble and Hubbard 14 ] 
have shown that the solution of Poisson’s equation with Dirichlet boundary 
conditions on an irregular computational region can use first-order difference 
relations of the governing equation near the boundary and still provide an overall 
second-order scheme. Ih this case the boundary condition can be satisfied exactly but 
the governing equation has a local truncation error of order of the step size near the 
boundary due to nonuniform grid spacing. If the solution is interpreted in terms of a 
uniform grid with grid points exterior to the boundary, the boundary condition 
discretization uses quadratic extrapolation for the exterior grid points. Thomas 15 ] 
investigated the boundary approximations with implicit AD1 techniques at various 
flow boundaries that occur in external and internal flow problems. The boundary 
approximations are conservatively differenced forms of the flow equations and have a 
local truncation error that is first order. The global truncation error in space is 
indicated to be second-order accurate but no numerical results are given to 
demonstrate this behavior. 

The present study is concerned with obtaining a better understanding of the 
influence numerical representations of the boundary approximations and conditions 
have on the global accuracy of the finite-difference solution to steady-state problems. 
Quasi-one-dimensional flow in a duct is used as an illustration of the influence 
boundary approximations have on the global accuracy when the MacCormack 
explicit scheme is used for the interior grid points. The steady-state problem is 
obtained from the asymptotic time solution of the transient equations. The case of 
subsonic entry to supersonic exit flow has previously been investigated by Turkel ] 1 ] 
while the present study is concerned with this problem plus the case of complete 
subsonic flow where an exit boundary condition must be specified. The numerical 
treatment of computational boundaries for a limited region with subsonic flow is 
discussed by Moretti and Pandolfi 161. A physical model of the flow outside of the 
boundaries provides the boundary conditions which can interact with the interior 
flow. 

The importance of the interior difference scheme is illustrated with the problem of 
compressible flow through a porous material where the governing equations are the 
same as the quasi-one-dimensional problem with a friction term added. The porosity 
of the material corresponds to the cross-sectional area of the duct, and for low speed 
flows the friction factor is related to the permeability of the porous material. The 
problem considered is the steady-state subsonic flow resulting from a pressure drop 
across the porous material. The solution is obtained with an implicit midpoint 
difference scheme which provides exactly the correct number of difference relations 
along with the boundary conditions needed to solve for the dependent variables at all 
of the grid points. Therefore, with this approach the interior difference relations are 
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not supplemented with boundary approximations. With central differences, three 
boundary or extraneous approximations are required for this problem and the 
influence on the global error is investigated. 

Finally, a dissipative model problem is studied to illustrate the effect of numerical 
discretization of the boundary conditions and boundary approximations on global 
error. For this case the global error is determined both numerically and analytically. 

QUASI-ONE-DIMENSIONAL FLOW 

The properties of the governing equations for transient flow in a duct are well 
understood from the point of view of the method of characteristics and are described 
by Shapiro [ 71. This relatively simple flow problem provides an excellent test case for 
studying the effects of boundary conditions and approximations as the exact steady- 
state solution for this flow is known. The quasi-one-dimensional flow problem is also 
of engineering interest to approximate more complex flows. The time-dependent 
approach is used in the present study to obtain the steady-state continuous solution to 
the flow in a duct with subsonic entry flow and with either subsonic or supersonic 
exit flow. The flow in a nozzle with supersonic flow has been investigated by Turkel 
[ 11 with both continuous flow and with a shock where a downstream pressure is 
specified. The handling of computational boundaries for subsonic flows has been 
investigated by Moretti and Pandolfi [6 1. 

The quasi-one-dimensional inviscid flow equations are written as 

(aQ/at) + (S/ax) = S, (1) 

where 

The variable A is the cross-sectional area of the duct and the remaining variables 
have the usual meaning. The total energy is defined as 

e=p(h++u’)-p, (2) 

where the enthalpy for a perfect gas is 

h = (Y/Q - l))P/P* (3) 

The characteristics of governing equations (1) are 

dx/dt = u f c (Mach lines), dx/dt = u (Path lines), (4) 
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where the speed of sound for a perfect gas is determined from c = dyp/p. The 
compatibility relations along the characteristics are 

pu du f dp f @uy/A)(dA/dx) dt = 0 along u It c, 

dp-c’dp=O along u. (5) 

These relations can be written as finite-difference equations and used to determine the 
solution at the next time step from the appropriate initial and boundary conditions. A 
finite-difference approach for solving governing equations (1) is used rather than the 
method of characteristics. The above relations are given to help understand the 
physical boundary conditions and to obtain computational relations at the boun- 
daries. 

The dependent variables at the interior grid points are advanced in time with the 
MacCormack explicit scheme. The variables are first predicted at time (n + 1) with 
first-order accuracy from the known conditions at time (n) and then a corrector is 
used to obtain the new results at time (M + 1) with second-order accuracy. The 
difference relations for governing equations (1) with the backward-forward difference 
version are 

ei=Qr-(dt/dx)(F,-Fi-,)"+dtS:_,,,, i = 2, 3 ,..., I, 

Q~+‘=~[Q~+~i-(df/dx)(l;i+,-~i)+dt~i+,,2], i = I - 1, I - 2 ,..., 2. (6) 

The MacCormack scheme requires the following Courant number restriction: 

C=(lU +c)Llt/Llx< 1. (7) 

When the steady-state solution is obtained with the MacCormack scheme, governing 
equations (1) are effectively evaluated with a midpoint difference scheme, which is 
second-order accurate in space. 

At the boundaries of the computational domain the MacCormack difference 
relations are not adequate and additional difference relations must be used along with 
the boundary conditions to complete the solution procedure for Q, and Qyt ‘. In 
addition, the variations of three dependent variables along the duct at the initial time 
is also required to start the solution. 

For the case of subsonic entry flow, the u + c and u characteristics are entering the 
computational domain and the u -c characteristic is leaving the computational 
domain. Therefore, two conditions must be specified and the remaining dependent 
variable must be determined from the compatibility relation of Eq. (5) along the u - c 
characteristic or from some other difference relation. Since in the present study only 
the steady-state solution is desired, the two physical boundary conditions utilize the 
steady-state isentropic relations for the entry pressure and density as a function of the 
entry Mach number, stagnation density, and stagnation pressure 

p, =pO(l + f(r- l)M;)-“‘Y-‘), PI = P,(P,/P,)y~ (8) 



250 

where 
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M; = u:/(y - i(y - 1) u;, 

The subscript 1 indicates the entry conditions while subscript 0 indicates the 
variables are stagnation conditions in an infinite reservoir. The above relations 
assume quasi-steady streamtube flow to determine the pressure and density from the 
entry velocity and become exact for the steady-state solution. For steady-state 
conditions, governing equations (1) are evaluated with a midpoint scheme where 
subscript 1 and 2 are the entry point and next grid point downstream. The three 
difference relations involve the quantities p, U, p, and e at the grid points 1 and 2. 
These variables are unknown at grid point 1 and known at grid points 2 from the 
interior difference scheme. The system of equations is completed with total energy 
relations (2) and equation of state (3). These relations are used to solve for the entry 
velocity at the new time level after the corrector step of the MacCormack difference 
scheme has been used to determine the dependent variables at grid point 2. 

u, = (-b + \/b* - 4ac)/2a, (9) 

where 

a = 1 - (4Y/(Y - 1)) A ,/(A 1 + ‘42h 

b = (1 - 4l@u’42 + i~2G4, + A2)1/@~)23 

c = -2l(e +P>/PI,. 

Equation (9) is second-order accurate and consistent with the MacCormack scheme 
when the steady-state solution is obtained and replaces the compatibility relation, 
Eq. (5). An extrapolation technique is often used to obtain a dependent variable at the 
boundary if a physical boundary condition does not specify the variable. The 
following linear extrapolation relation for the velocity at the entry has been 
investigated: 

24, = 2u, - 2.41, (10) 

where the velocities are at the (n + 1) time level. 
For subsonic exit flow, there are two characteristics leaving the computational 

domain and one entering. For supersonic flow, all three characteristics leave the 
computational domain. Therefore, one physical boundary condition is required for 
subsonic flow at the exit while no boundary conditions can be specified for 
continuous supersonic exit flow. Three boundary relations have been investigated for 
subsonic exit flow and are applied to obtain the dependent variables at the (n + 1) 
time level. 

The characteristic boundary relation method uses the compatibility conditions, 
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Eq. (5), along the u + c and u characteristics to obtain the first-order finite-difference 
relations 

*;f’=&- [p;” - Pa + (CnUYlA WAldx)), At Il@c), 5 (114 

Pi+’ =Pb + (P:” -Pb)/d* (1 lb) 

For subsonic flow the exit pressure p;’ ’ is specified. The dependent variables at the 
grid points a and b are at time IZ and are on the u + c and u characteristics, respec 
tively. Linear interpolation along with a first-order difference relation for the charac- 
teristic locations are used to determine these variables as follows: 

W,=(l -a) W,faW,-,, where W = u or p, 

w,=(l-p)w,+Bw,-,, where W =p or p, (12) 

and the coefficients are 

a = At(u, + c,)/Ax, p = At u,/Ax. 

With the above relations and Eq. (12) used in Eqs. (1 l), the right sides of these 
equations are known and the exit velocity and density can be determined. 

The unsteady midpoint boundary relations are developed from continuity and 
momentum equations (1) using one-sided spatial differences and are written in the 
following finite-difference form: 

((Q"+ ’ -Q”)/At),+((F,--F,-,)/Ax)“+‘=$3,+S,&”+’. 

The continuity equation becomes 

(13) 

($A);+’ = [@A>: + (At/Ax)@uA):f ,’ ]/( 1 + (At/Ax) u: + ‘). (14) 

Momentum equation (13) and the above continuity equation (14) are combined to 
obtain the exit velocity 

Ul n+‘= {@wi);+At[@u*A),“_f: -;(P,-p,-Jn+‘(A, +A,-,)]/Ax} 

x (@A); + At@uA);-t;/Ax} -‘. (15) 

With exit velocity determined from Eq. (15), the density is then evaluated from 
Eq. (14). 

The extrapolation boundary relations for a uniform grid spacing use the following 
expressions to determine the exit density and velocity: 

first order: w, = w, ~, + O(dx), W=p or u; (16a) 

second order : W, = 2W,m, - IV-, + O(Ax*), W=p or u. (16b) 

According to Gustafsson’s definition 121, Eqs. (16a) and (16b) are zeroth- and first- 
order accurate boundary approximations, respectively. The extrapolation procedure 
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can also use characteristic variables for W and the stability and accuracy of the 
results might be improved. 

The flow in ducts with the geometries utilized by Griffin and Anderson [ 81 are 
used to illustrate the accuracy of the various boundary conditions. These geometries 
are of the Lava1 nozzle type with the throat height above the centerline used as the 
reference length L. With entry at x = 0, the throat at x = x, and the exit at x = x,, 
the area variation of the duct is given as 

A = 1 + (A, - 1>[(XT-X)/XJ2 for x<x,, 

= 1 + (A,- l)[(x-x,)/(x,-x,)]* for x>x,. (17) 

The entry area A, and the exit area A, must be specified to complete the description 
of the duct. 

Thefirst example is a duct flow with A, = 1.5, A, = 2.0, x, = 40, and X~ = 10 with 
supersonic flow at the exit without any shock waves. The exact analytical solution for 
the isentropic flow is used as the initial conditions for the dependent variables along 
the duct. The numerical solution is obtained with Ax = 1 and At is chosen at each 
time step such that the maximum Courant number at any grid point is 0.9. The 
steady state solution to the finite-difference equations is different than the initial 
conditions due to truncation error and will be the same only when Ax-t 0. The 
MacCormack finite-difference technique is used to obtain the steady-state solution for 
the duct configuration. The approach of the solution towards a steady state is 
illustrated in Table I where the entry velocity is presented for the midpoint boundary 
relation, Eq. (9). With the number of decimal places shown in this table, a steady 
state is obtained after 400 time steps for the midpoint boundary relation. The time 
shown is the nondimensional time (t/L) a. The result of using the linear 
extrapolution relation of Eq. (10) for the entry velocity is shown in Table I. After 

TABLE I 

Entry Velocity for Supersonic Duct 

Number of 
time steps Time Midpoint Extrapolation 

0 0 0.499922 0.499922 

100 33.5 0.500244 0.498947 

200 66.9 0.500247 0.498998 

300 100.4 0.500246 0.499271 

400 133.9 0.500247 0.499201 

500 167.3 0.500247 0.499042 

600 200.8 0.500247 0.498816 

700 234.3 0.500247 0.498532 

800 267.7 0.500247 0.498189 

900 301.2 0.500247 0.497781 

1000 334.1 0.500247 0.497306 
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FIG. 1. Infection of computational boundary relation with linear extrapolation and supersonic exit 
flow. 
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FIG. 2. Accuracy of exit velocity with various exit boundary approximations for steady state quasi 
one-dimensional flow. 
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1000 time steps a steady state is not obtained and this technique appears to give a 
solution that is drifting. When linear extrapolation is used to determine the dependent 
variables p, U, and p at the exit, a steady-state solution is obtained and the entry 
velocity is the same as that given in Table I with the midpoint relation, Eq. (9). Since 
the linear extrapolation relations are not consistent with the MacCormack finite- 
difference relations, however, the mass flux near the exit oscillates about the “correct” 
numerical value as shown in Fig. 1. The correct upstream numerical solution is used 
to judge the error of puA and this “correct” numerical solution has an error of 
0.053% relative to the exact analytical solution. Although the oscillation shown in 
Fig. 1 is unpleasant, the error is about the same or less than the truncation error of 
the “correct” numerical solution with dx = 1. 

The second example considered is subsonic duct flow with A, = 6, A, = 1, x1 = 20, 
and x, = 20. The pressure at the exit has a value of 0.93716250~~ and is held fixed 
as the known physical boundary condition. Steady-state solutions are obtained with 
Ax = 2, 1, and 0.5 with 1000, 2000, and 4000 time steps, respectively. The exit 
velocity is used to judge the spatial accuracy of the steady-state solutions where the 
exact value of the exit velocity is 0.358610 & The percent error of the steady- 
state exit velocity is given in Fig. 2 for the boundary relations given by characteristic 

,033 1 10 102 

NUMBER OF INTERVALS 

FIG. 3. Accuracy of exit velocity with various exit boundary approximations for steady state quasi- 
one-dimensional flow. 
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equation (1 l), finite-difference equation (15), and extrapolation equation (16). All of 
the methods have an error behavior that indicates that the spatial differencing is 
second order. When the characteristic boundary relation is used, the mass flux 
wiggles at the grid points near the exit with behavior similar to that shown in Fig. 1. 

The global second-order behavior with the first-order extrapolation boundary 
approximation cannot in general be expected to occur. The foregoing example has 
zero gradients of the dependent variables at the exit and the first-order extrapolation 
is appropriate. The solution was obtained for the same problem except the exit 
conditions are applied at x1 = 10, where the dependent variable gradients are nonzero. 
The results of this accuracy study are given in Fig. 3, where the first-order 
extrapolation boundary approximation results in first-order global accuracy. The 
other boundary approximations result in global second-order accuracy. The charac- 
teristic approximation is based on first-order approximations to the governing 
equations and does not destroy the global second-order behavior. A boundary 
approximation which uses the governing equations can have a local truncation error 
of first order while extrapolation techniques must be second order in order to avoid 
reduction of the global accuracy. 

FLOW IN POROUS MEDIA 

One-dimensional high-speed subsonic compressible flow through a porous material 
is considered. The gas and porous material are allowed to have different temperatures 
but energy transport due to conduction and dispersion is neglected. The governing 
equations are of the same form as Eqs. (1) except there are four dependent variables 
as follows and the flux vector is: 

PE 

Q= PU& i 1 = 
efE 

e,(l - 4 

Q, 
Q* 
Q, 
Q4 
ly i ’ I 

PUE PUE 

F= cw2fPb F= cw2fPb 
(ef + P> 24~ (ef + P> 24~ 

L 0 0 

where 

p = density of fluid, 

p = pressure of fluid, 

u = local or interstitial velocity of fluid, 

ef = total fluid energy per unit fluid volume, 

e, = total solid energy per unit solid volume = ps c, T,, 

E = porosity of solid material. 

2 (18) 
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These relations are the same as quasi-one-dimensional equation (1) except the cross- 
sectional area is replaced by the porosity. The source term in-Eq. (1) becomes 

(19) 

where a and p are dependent on the flow resistance model, 

h = heat transfer coefficient, 

up = particle surface area per unit volume of porous media, 

= 6( 1 -- s)/d,, for spherical particles of diameter d,, 

T = temperature of fluid = ii?ep/Rp, 

T, = temperature of solid porous material. 

The coefficients a and /I are determined from the Ergun [9] equation for gas flow 
thru a packed bed of particles with effective diameter d, 

a = 150( 1 - c)*/(c3d;), p = 1.75(1 - E)/(E~ d,). (20) 

The foregoing momentum equation includes the usual Forchheimer equation which 
relates the pressure gradient to the flow resistance terms. In addition, the momentum 
equation includes the inertia term as suggested by Emanuel and Jones [ 10 1 and 
predicts choked flow if there is sufficient pressure drop. The energy equations are the 
Schumann [ 111 model for heat transfer in a bed of particles except the kinetic energy 
of the fluid and the work done on the fluid by pressure forces are included. 

For subsonic flow everywhere, the governing equations require two boundary 
conditions at the inflow locations (x = 0) and one boundary condition is needed at 
the outflow (x = L). The pressures pin and P,,~ are assumed known at both locations 
while the gas temperature Tin is specified at the inflow. The initial variation of the 
dependent variables across the porous material is obtained from the steady state 
isothermal solution with the inertia term neglected in the momentum equation. The 
pressure variation has been determined by Morrison [ 121 and the result is 

P’ lP,f, + (Pi”, -P~“)ww’z. C-21) 

The mass flux density is 

PU& = {-afi + I(w)’ + Wdn -Ad p/N- 1 I’* I/W (22) 

The density is determined from the equation of state with the inflow temperature used 
along with the pressure obtained from Eq. (21). 
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This investigation is concerned with obtaining the steady-state solution where the 
solid and gas temperatures are the same at any location without heat transfer between 
the two phases. The adiabatic flow case has an exact solution, but for the present 
formulation a difficult iteration process is so03342h9 d i f f i c u l t  
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B, W,-C, W:=D,r 

-AiWi_,+BiWi-CCiWi+,=Di, i = 2, 3 ,..., I - 1, 

-A,W,-,+B,W,=D,, (28) 

where 

and the governing relations are used in the following manner for the midpoint 
scheme: 

At i= 1: 

boundary condition equation (27a) 

momentum equation (25) 

boundary condition equation (27b) 

solid energy equation (26) 

At i = 2, 3,..., I - 1: 

continuity equation (i -+ i + 1 in Eq. 25) 

momentum equation (25) 

fluid energy equation (25) 

solid energy equation (26) 

(294 

Wb) 

At i = I: 

continuity equation (i = I - 1 in Eq. 25) 

boundary condition (27b) 

fluid energy equation (25) 

solid energy equation (26). (29~) 

The conventional method for solving Eq. (1) with an implicit scheme is to use 
central spatial differences and to use the transient solution to obtain the steady-state 
result. When this approach is applied to governing equations (1) with linearization 
(24), the difference equations are of the form of Eq. (28), where the central drJ&-ence 
coefficients are 
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Ai = O&,lxT, 

Bi = VAt - Ofii, 

ci = -aTi, ,/XT, 

Di=S;-(Fi+,-Fi_,)“/x,, 

XT=Xi+l -xi-lY i = 2, 3 ,..., I - 1, 

o= 1, Fully implicit (or steady state solution), 
I 

= 13 Trapezoidal scheme, 

?= Unit matrix (zero for steady-state equation). 

(30) 

These difference equations can be used to replace midpoint difference equations 
(25), except that the relations for i = 1 have been lost. Therefore, there is a need to 
provide a boundary approximation at i = 1 and two boundary approximations at 
i = I. The solid energy equation still can be applied at i = 1 and I. The foregoing 
central difference equations (30) for the steady state can be obtained from Eqs. (23) 
and (25) with i replaced with i - 1. These two equations are added and divided by xT 
to obtain the additive midpoint coeffkients. 

Ai=(Ji-, + iAXi-,fii-,)/X,, 
Bi=-& 

ci = -(& + 1 - iAXiD”i+ ,)/XT, 
Di=t[AXi(Si+,+Si)n+AXi-~(Si+si~~)”]/X~-(Fi+~-Fi_~)n/X,, 

(31) 

for i = 2, 3,..., Z - 1. The steady state form of Eqs. (30) becomes eqs. (3 1) if the quan- 
tities DiAQi and Si are evaluated with the weighting relation 

wi=[AXi(wi+,+ Wi)+AXi-,(Wi+ w~~,)]/(zx,.). (32) 

Since difference equations (28) with additive midpoint coeffkients (31) are just 
another formulation of the midpoint scheme, the appropriate relations at i = 1 and I 
are midpoint relations (29a) and (29c), respectively. These same boundary approx- 
imations are used with central difference scheme (30) replacing Eq. (29b). 

The numerical results are obtained for the following conditions: 

0) E = 0.32, 

(ii) d, = 5 x 10P6m, 

(iii) y= 1.4, 

(iv) pin = 1.01325 x 10’ N/m2, 

(v) pout = 1.01325 x lo5 N/m2, 
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(4 Tin = 297.15 K, 

(vii) L = 1 cm, 

(viii) ,D = 1.458 x lo-“7”.“/(7”+ 110.4) kg/m-s, 

6x1 h = 18.75 J/m*-s-K, 

0) c, = 880.0 J/kg-K, 

(xi> ps = 2648.0 kg/m3, 

(xii) M = 28.966 kg/(kg mol), 

(xiii) R = 83 14.3 J/(kg mol)(K). 

Conditions (ixt(xiii) are not needed for the steady-state solution. The numerical 
solution of the steady state form of the governing equations is readily obtained with 
midpoint scheme (29) and this procedure requires several iterations with rapid 
convergence. When central difference scheme (30) with 19 = 1 and I = 0 is used, the 
solution does not converge. This same behavior is observed with the additive 
midpoint scheme. If a subtractive midpoint scheme is developed from Eq. (25), then 
this approach has the same convergence properties of the midpoint scheme. In order 
to obtain the steady-state solution with the central difference scheme, the transient 
solution approach is used. With a fully implicit scheme (B= l), a steady-state 
solution is obtained while with the Crank-Nicolson approach (0 = 0.5) the solution 
tends to have small oscillations. When the transient midpoint scheme (also known as 
the box scheme) is used, the fully implicit scheme (0 = 1) converges to a steady state 
while with 8= 0.5, the solution has large oscillations. With more time steps the 
magnitude of the oscillations can be reduced. The numerical results presented with 
the transient procedure are for the case 0 = 1. 

With the midpoint scheme the numerical solution is obtained without any 
boundary approximations. The mass flux pm, which is constant through the porous 
media, is used to judge the accuracy of the numerical solutions with the exact 
solution obtained with Richardson extrapolation. The accuracy of the midpoint 
scheme is illustrated in Fig. 4, where the number of grid points through the porous 
media is varied. This method has the expected second-order behavior. The accuracy 
of the central difference scheme with the second-order midpoint boundary approx- 
imations defined by Eqs. (29a) and 29b) has nearly the same accuracy as the 
midpoint scheme as shown in Fig. 4. The influence of boundary approximations with 
the central difference scheme is investigated by replacing momentum equation (29a) 
at the entry with the following first-order difference relations for the momentum 
equation: 

relation 1: 

relation 2: 

(Fi + , - F;)/dx, = Si) i= 1, Wa) 

(Fi + 1 - Fi)/dxi = si + I 3 i= 1, Wb) 

The first boundary approximation (33a) actually improves the accuracy of the results 
but the overall accuracy is not completely second-order for the grid size investigated. 
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FIG. 4. Accuracy of mass flux in porous media with several entry boundary approximations. 

The second boundary approximation (33b) is less accurate but the overall accuracy 
of the scheme has second-order behavior. The use of a first-order boundary approx- 
imation of the governing equation with a second-order interior difference scheme still 
results in a scheme with overall second-order behavior. 

DISSIPATIVE MODEL PROBLEM 

The importance of boundary condition discretization and boundary or extraneous 
approximations on the finite-difference solution of a dissipative type differential 
equation is investigated by considering the model problem 

(34) 

with boundary conditions 

Atq=O: 
Dirichlet w, = 0 Wa) 

Or 

Neumann (awla>, = 0 Wb) 
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At r= 1: 
W=l (36) 

The exact solution of this equation is 

WE = (earl f e-a”)/(ea f e-“), (37) 

where the plus sign corresponds to the Neumann boundary condition while the 
negative is for the Dirichlet boundary condition. The parameter a = b/\/l and for the 
numerical solutions b = I = 2. For the Dirichlet problem, the value of W at q = 0.1 is 
0.073327303 and is used to test the accuracy of the numerical solutions. For the 
Neumann problem, the value of W at q = 0 is 0.45909813 and is used for judging the 
accuracy of these numerical solutions. These exact solutions for the two types of 
boundary conditions are given in Fig. 5. 

The numerical discretization of the boundary conditions is approximated with the 
following relations, where h is the grid size and the local truncation is indicated: 

Dirichlet: (Boundary q = 0 is located between first and second grid points and the 
distance from first grid point is fh where 0 <f < 1) 

first order: 
W, = W, + O(h). (384 

second order: 
w, = w, -f(w* - W,) + O(h2). Wb) 

Neumann: (Boundary q = 0 at first grid point): 

first order: (W,- W,)/h= 5 +0(h). 
c 1 

Pa) 
tl 

Neumann: (Boundary midway between first and second grid points): 

second order: (W, - W,)/h = (8 W/&j>, + O(h*). W) 

The numerical solutions are obtained with a uniform grid in order to isolate the 
influence of the boundary condition discretization errors. The derivative in Eq. (34) is 
evaluated with a central difference scheme and the equation becomes 

(FVj+,-2Wj+ Wj-,)/h2-a2W’j=0, (40) 

which has a local truncation error of 0(/z*). The resulting difference equations and 
boundary conditions (38) or (39) are tri-diagonal equations of the form of Eq. (28). 

With the Dirichlet boundary condition W=O at q=O, the numerical solution has 
been obtained to the model difference equation with the boundary located midway 
between the first and second grid points. The results for first-order boundary 
condition (38a) and second-order boundary condition (38b) are given in Fig. 6. A 
comparison of the first-order solution with the exact solution is given in Fig. 5. For 
this problem the first-order boundary condition approximation has a significant 
adverse influence on the solution which has first-order behavior. 
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FIG. 5. Solution of dissipative model problem. 

The model problem has been solved with Neumann boundary conditions with a 
uniform grid. The results of this study are given in Fig. 7 for the first-order boundary 
conditions (Eqs. (39a)) and the second-order boundary condition (Eq. (39b)). A 
comparison of the first-order solution with the exact solution is given in Fig. 5. With 
the boundary at the first grid point, a second-order boundary condition can be 
obtained with the use of the governing equation. A grid point j = 0 is introduced 
beyond the boundary such that ~7~ - q, = )I$ - q0 = h. The derivative boundary 
condition is written as 

(W, - W”)/2h = @W/f3?j), + O(h2). 

Governing difference equation (28) is applied at the boundary and for this case 
becomes 

-A, w,+B, w, -c, w*=D,: 

where bars have been added to the coefficients. The above equations are combined to 
eliminate W,, and the boundary condition is of the form of the first equation of (28). 
where 

B, =i?,, c, = c, +A,, D, = 0, - 2hA, (a W/&j),{. 
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FIG. 6. Dirichlet boundary condition for dissipative model problem. 

This method gives a second-order boundary condition with the same accuracy of the 
previous methods. 

The foregoing investigation of the influence of boundary condition numerical error 
can also be investigated analytically. The exact solution of difference equation (40) is 

yj zz a($- ’ + bp(- ’ (41) 

and for the exact Dirichlet boundary condition (35a) becomes 

Wj = (g’,-’ - &‘)/(c$’ -(T(y), j = 1) 2 ,*.., J, (42) 

where 

(5 I,* = 1 f ah + 4 (a/~)~ f i(ah)” + ... = e*ah f & (a/~)~ + ... . 

The terms in Eq. (42) are approximated as 

&*I - -e*“‘?i(l F &aa’h2~,j+ ... ). 

The error of the difference solution is defined as 

(43) 

(44) E=(Wj- WJW,. 
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FIG. 7. Neumann boundary condition for dissipative model problem. 

The difference solution or global error with the use of Eqs. (37) (42), and (43) in 
Eq. (44) becomes 

E=E2h2+-. (45) 

where E, = &a”(coth a -- vj coth a~~). This shows that the central difference scheme 
with exact Dirichlet boundary conditions results in a second-order global error. 

Consider the case where the Dirichlet boundary condition is located between the 
first and second grid points. The exact solution (37) to this case is 

W, = sinh aq/sinh a. 

The difference solution of Eq. (40) with boundary conditions (38) becomes 

(46) 

wi = Cih (47) 

where~i=(l-ca,)aj,-‘-(l-coZ)a~-‘, 

w, =cw2, c = 0, for boundary condition (38a), 

= -fl(l -I-). for boundary condition (38b). 
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Since qj = h(j - 1) -fh and CJ,,~ is given by Eq. (42), the following is obtained: 

u{,’ =e*a”j[l kfah + ~(cxJJz)~ T &a3qjh2 + . . . 1. 

The error as defined by Eq. (44) becomes with Eqs. (37), (47), and (48): 
First-order boundary condition (38a) 

E =fa(coth aqj - coth a) h + . . . . 

Second-order boundary condition (38b) 

(@a) 

E=E,h’+ ..+. (49b) 

Therefore the global accuracy corresponds to the local truncation error of the 
boundary condition. The errors predicted from Eqs. (49) are the solid lines in Fig. 6 
and are in excellent agreement with the numerical computations indicated with the 
circles. 

If first-order Neumann boundary condition (39a) is used, the difference solution is 

where 

c$j=A2cJj-‘-A,a{-‘, 

A,,, = (1 - u,,~) = T ah(1 f +ah + ... ). 

With the use of Eqs. (37) and (43), the error for the above difference equation 
becomes: 

First-order boundary condition (39a) 

E = fa(tanh a - tanh aqj) h + e ee . (5 14 

For second-order Neumann boundary condition (39b), the difference solution is given 
by Eq. (47), where c = 1. The use of Eqs. (42) and (48) withf= 0.5 gives the error of 
the difference solution as: 

Second-order boundary condition (39b) 

E=&a3(tanha-vjtanhavj)h2 +... . (5 lb) 

The global accuracy corresponds to the local truncation error of the Neumann 
boundary conditions. The errors predicted from Eqs. (51) are the solid lines in Fig. 7 
and are in excellent agreement with the numerical computations indicated with the 
circles. 

In order to investigate the influence of boundary or extraneous approximations, it 
is assumed that a relation is needed to determine W,, while W, is known from 
Dirichlet boundary condition (35a). Extrapolation approximations are considered 
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first where the local truncation error is indicated and obtained from a Taylor’s series 
expansion 

first order: w, = w, + O(h), W) 

second order: w, = w, + +<w, - W,) + O(h2). (=b) 

The finite-difference solution is given by Eq. (50), where 

A,-, = Ulq2 = 1 f ah + ... (534 

and 

Al.2 = (JI,Z(~I.Z - 2) = -1 + (ah)2 f (ah)” + . . . (53b) 

for the first- and second-order approximations, respectively. The solution error 
becomes: 

First-order boundary approximation (52a) 

E = a(coth a - coth a~,~) h + ... . (544 

Second-order boundary approximation (52b) 

E=E,h’+.... (54b) 

The locally second-order extrapolation approximation results in global second-order 
accuracy and has the same error as central difference scheme (45). 

Another approach for obtaining a boundary approximation is to difference the 
governing equation; for this case the result is 

(W,+,-2FVi+ Wj&h2-a2[@Wim,+(1-O)WJ=O, (55) 
where 

o= 1, first-order local truncation error, 

= 0. second-order local truncation error. 

If 0 = 0, then Eq. (40) is obtained and a second-order global accuracy results as 
given by Eq. (45). If 0 = 1, the solution to difference equation (55) is given by 
Eq. (42), where 

a ,,2= 1 *ah and $2’ = e*“‘J,(l - ia2v,jh + . . . ), 

The difference solution error becomes 

E=+a’(l -rlj)h+ ... , 

which shows that the global accuracy is first-order. If the first-order form of Eq. (55) 
is used at j = 2, difference relation (55) becomes 

Wz = fl( W, + W,) - (ah)2 W, ] + O(h”). (56) 
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When this approximation is used along with the second-order form of Eq. (55) at all 
the remaining grid points, the difference solution error is the same as Eq. (45) and the 
global error is second-order. This behavior has been observed previously by 
Srivastava, Werle, and Davis [ 14) and is the only case where a first-order approx- 
imation has not destroyed the second-order global accuracy. Although Eq. (56) 
represents the governing equation with a first-order local truncation error, the approx- 
imation appears to be third-order when written as Eq. (56) and compared to 
extrapolation relations (52). This example illustrates the importance of stating 
whether extrapolation or a difference form of the governing equation is being used to 
provide the boundary approximation. 

SUMMARY OF RESULTS 

(1) For the quasi-one-dimensional flow in a duct with the interior grid points 
solved with the MacCormack scheme, the boundary approximations have the 
following influences on the accuracy of the solution: 

(a) For boundary approximation difference relations that are inconsistent with 
the interior scheme, small oscillations near the boundary occur. 

(b) The midpoint relation gives the most accurate results for the procedures 
investigated. 

(c) With first-order extrapolation boundary approximations, the global 
accuracy is generally reduced to first order. 

(2) An interior implicit midpoint difference technique is utilized for solving the 
compressible one-dimensional flow in a porous material (or quasi-one-dimensional 
flow with friction). This procedure is consistent with the boundary conditions and 
does not require any boundary approximations. When spatial central differences are 
used in the interior implicit scheme, three boundary approximations are required to 
complete the system of difference equations. The midpoint scheme provides guidance 
in indicating the appropriate boundary approximations to be employed. If first-order 
boundary approximations to the governing equations are used, the global accuracy of 
the solutions still tends to be second order. The extension of the midpoint rule to time 
dependent problems with two space dimensions is not readily performed and requires 
development. The author [ 15 1 has used this concept for solving the inviscid super- 
sonic two-dimensional flow over a pointed ogive where a marching procedure is used 
along the body. 

(3) Boundary condition discretization accuracy has significant influence on the 
global accuracy of a dissipative (second derivative) model problem. When a second- 
order interior difference scheme is used, the use of first-order boundary condition 
discretization reduces the overall accuracy of the solution to first order. This result 
occurs for both Dirichlet and Neumann boundary conditions. A boundary approx- 
imation investigation indicates that global second-order accuracy is retained with 
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second-order extrapolation and with the model equation approximated with first-order 
accuracy. 

The results of the problems investigated indicate that first-order boundary approx- 
imations derived from the governing equations give second-order global accuracy 
while first-order boundary approximations resulting from extrapolation give first- 
order global accuracy. For boundary condition discretization, first-order difference 
relations result in first-order global accuracy while second-order difference relations 
are required to retain second-order behavior. 
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